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Abstract.

Some practical techniques are discussed for analyzing time series whose

statistical properties are changing with time. We first consider how principal component
analysis can reduce the multidimensional nature of certain series and, in particular, apply
this technique to the analysis of changing seasonal patterns. Discussions of trend, changes
in oscillatory behavior, and ‘“unusual” events follow. The problem of making inferences
regarding causation is briefly considered. We conclude with a call for flexibility in approach.

INTRODUCTION

Time series are ubiquitous in all branches of ecology.
Perhaps most of the publications in this discipline pres-
ent a plot of one or more quantities as a function of
time. The analysis of time series is a well-developed
branch of statistics, and very readable introductions to
the subject have been prepared by Kendall (1976),
Chatfield (1989), who includes a brief review of other
books on time series methods, and Wei (1990). Shum-
way (1988) presents an excellent practical treatment of
time series analysis applications and there are numer-
ous examples of such applications in the various eco-
logical sciences (Platt and Denman 1975, 1980, Poole
1978, Shugart 1978, Steele 1978). Many of the tech-
niques are also applicable to transect data, i.e., to spa-
tial series (Ripley 1981).

The focus of this article is quite specific: how can
one objectively determine whether a time series has
changed after some perturbation has occurred? In time
series terminology, this question is similar to asking if
the series is stationary, although here we examine only
certain types of nonstationarity. The level of our pre-
sentation is limited. There is no attempt to give an
introductory overview of time series analysis in ecol-
ogy, nor to delve into formal mathematical and sta-
tistical questions; the references cited above can be
used as a guide to these topics. Rather, we offer a few
practical comments on selected techniques for analyz-
ing series that are, indeed, changing. Many readers will,
no doubt, have some favorite technique that has been
omitted.

We first address the important issue of reducing mul-
tivariate sets of data to manageable proportions and
the related issue of variability in seasonal pattern. These

! For reprints of this Special Feature, see footnote 1, page
2037.

2 The order of authorship was determined by simulated coin
tosses.

techniques receive the most emphasis, because of their
proven applicability to geophysical series and their as
yet unrealized promise for analyzing ecological data.
We then consider techniques for assessing changes in
trend, changes in oscillatory behavior, and the impact
of “unusual” events. The treatment of these latter three
topics is cursory, as they have already received much
attention in the ecological literature. Finally, we ex-
amine inference about causation.

SEASONALITY AND REDUCING
DIMENSIONALITY

The study of ecosystem response to perturbation of-
ten involves an examination of several different vari-
ables simultaneously. In the case of an aquatic envi-
ronment, for example, we might wish to investigate
the time course of dissolved nutrients, primary pro-
ductivity, and the biomasses of various trophic group-
ings. In general, there may be p univariate time series
of interest, where p > 1, and together these series can
be thought of as forming a p X 1 vector time series.

A different but related problem concerns the analysis
of a single variable that is indexed on p coordinates in
addition to the basic time step ¢. For example, a single
variable measured at p different stations on a lake or
ocean surface, at p different depths at a single station,
or for p subdivisions of the basic time step (e.g., month-
ly values when ¢ = 1 yr, in which case p = 12) also
gives rise to a collection of p related univariate series.
In this case, however, the p univariate series are records
of the same property and are measured in the same
units. They can be thought of as forming a multidi-
mensionaltime series, as opposed to a vector time series
in which the measured properties and perhaps the units
are fundamentally different.

Univariate time series methods have various exten-
sions to both the vector and multidimensional cases
(e.g., Ripley 1981, Tiao and Box 1981). Applications
of these methods are rare, however, for biological data
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in the environmental sciences, probably because of the
large number of samples required. Here, we examine
a different approach, namely, reduction in the dimen-
sion of multivariate time series to the univariate case,
enabling use of univariate methods that require fewer
data.

Various forms of eigenvector analysis, such as prin-
cipal component analysis (PCA) or common factor
analysis, have been applied to reduce the dimension
of problems involving multiple variables (Pielou 1984,
Jolliffe 1986). The goal in PCA is to replace the original
variables by a smaller number of new variables, linear
combinations of the original variables, that capture
most of the total original variance but are uncorrelated
with each other. The new variables are called principal
components (PC’s) and are arranged in descending or-
der according to the amount of the original variance
they reproduce.

Although the number of variables is reduced from,
say, p to m (1 = m < p) with the use of PCA, the
ability to interpret the m new uncorrelated variables
is not guaranteed. The difficulty arises because prin-
cipal components are linear combinations of variables
that may have an essentially different nature and be
measured in completely different units. This difficulty
applies to vector time series. No such problem, howev-
er, plagues the use of PCA for multidimensional time
series and it is this application that we focus on here.

Meteorologists, oceanographers, and hydrologists
have successfully applied PCA to time-varying spatial
distributions such as rainfall (Richman and Lamb
1985), sea surface temperature (Hsuing and Newell
1983) and streamflow (Lins 1985). Similar analyses,
but for coordinates other than those in the horizontal
plane, have been published (Denman and Platt 1978).
The individual PC’s in this context represent the dom-
inant spatial modes of variation for the variable under
study (Preisendorfer 1988). PCA also results in a scalar
series for each mode, known as the amplitude time
series or score, that expresses the relative importance
of each mode over time. Thus, if the first m PC’s or
modes can account for most of the variability in the
original p variables, we have succeeded in reducing the
original p-dimensional time series to # univariate se-
ries. Often, the first few modes do represent most of
the variability in the original data, and m is typically
an order of magnitude smaller than p.

Craddock (1965) described a related application of
PCA to multidimensional data in which monthly mean
temperature is indexed on each month of the year, and
the 12 monthly means are followed from year to year.
The characteristic patterns in this case can be inter-
preted as the major modes in which the annual pattern
deviates from the long-term mean pattern. Here, we
illustrate a similar use of PCA with data for monthly

births in the United States from 1948 through 1978
(Shumway 1988: Appendix I, Table 10). The data form
a complex long-term pattern, dominated by the “baby
boom” peaking around 1960. This peak is best re-
moved to prevent obscuring of the seasonal patterns
(Fig. 1). First, a centered 12-term moving average is
used to filter the series, resulting in a smooth series
representing the long-term behavior of the data. Then
the seasonal patterns are estimated by subtracting the
smoothed from the original series (e.g., Chatfield 1989).
A PCA is applied to the covariance matrix of the 12
extracted monthly variables for the years 1949 through
1977, as filtering results in the loss of 6 mo of data for
both 1948 and 1978. As each monthly series is first
adjusted by its long-term mean, we are actually ex-
amining monthly anomalies. In classical time series
terminology, these anomalies are referred to as the dis-
turbance component of the series. The first three prin-
cipal components, which account for 65% of the total
variability, are judged to be significant and retained
for an orthogonal (varimax) rotation. The first rotated
component accounts for 34% of the variability and is
characterized by a contrast between negative coeffi-
cients in spring, around the time of minimum birth
rate, and positive coefficients in summer, around the
time of maximum birth rate (Fig. 2A). Thus, the most
common form of deviation from the mean seasonal
pattern can be thought of as a change in amplitude of
the seasonal cycle. The intensity of this first mode, i.e.,
the amplitude time series, exhibits a decreasing trend
between approximately 1954 and 1973, implying that
births became distributed more evenly throughout the
year (Fig. 2B). An unusually low value for 1951 is also
clear. Although these conclusions can be deduced from
the original series (Fig. 1), often such structure will not
be apparent in the raw data; furthermore, the ampli-
tude time series (Fig. 2B) provides a quantitative de-
scription of the structure for further analysis. The re-
maining rotated components can be investigated in a
similar manner; the main point to note here is that a
third of the variability for the original multidimen-
sional series has been captured in a single series, which
amplifies trends and anomalies that can then be in-
vestigated with conventional univariate methods.

The completion of an informative PCA cannot be
entrusted solely to the numerous computer programs
available. Careful judgment is needed at each step of
the process. Certain key technical points are summa-
rized as follows:

1) Sampling plans inevitably change over the years,
yet PCA assumes that the coordinates for a multidi-
mensional series are fixed. Interpolation of the data
may be required to place it on an equal footing from
year to year, in which case care must be taken to avoid
the introduction of spurious correlation among inter-
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FiG. 1. The upper graph shows monthly births in the United States for the years 1948 through 1978 (data from Shumway

1988: Appendix I, Table 10). The smooth line in the upper graph is the centered 12-term moving average. The bottom graph
is the seasonal pattern of monthly births, as determined by the residuals from the moving average.

polated sampling points. Approximation with piece-
wise polynomials, also known as splines, is often ap-
propriate (Wegman and Wright 1983).

2) Coordinates, whether spatial or temporal, for a
multidimensional time series should be equally spaced
to avoid certain biases that can enter PCA (Karl et al.
1982).

3) The data may require filtering to prevent un-
wanted frequencies from dominating the analysis, as
in the example of monthly births.

4) The form of the dispersion matrix must be cho-
sen, such as the covariance matrix, the correlation ma-
trix, or various robust alternatives that guard against
sensitivity to outliers (Devlin et al. 1981, Jolliffe 1986).

5) Various diagnostic tests may suggest that rotation
of the principal components is necessary (Richman
1986).

6) If rotation is necessary, an objective determina-
tion of m, the number of “significant” components to
be retained for rotation, is required. Jolliffe (1986) de-
votes a chapter to this difficult issue, and Preisendorfer
(1988) and Stauffer et al. (1985) discuss some Monte
Carlo alternatives in an environmental science context.
If asymptotic theory is used to make inferences about
the number of significant components, then transfor-
mation of the data may be required to satisfy multi-
variate normality. In the case of time series, however,
the presence of autocorrelation usually violates the as-
sumption of independent observations and compli-
cates the inference procedures developed for PCA.

DETECTING TREND

Inferences about trend can often be made from the
original time series, but sometimes obfuscating fea-
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Fi1G. 2. (A) Coeflicients for the first principal component

of seasonal birth patterns shown in Fig. 1. The principal com-
ponent analysis was performed on the monthly anomalies
(deviations from the long-term mean for each month) and the
results were subjected to a varimax rotation. (B) Amplitude
time series for the first principal component illustrated in (A).
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tures of the series, such as seasonality or interannual
fluctuations, must first be removed. A time series can
be thought of as a mixture of several constituents. The
birth series of Fig. 1, for example, has been decom-
posed into a sum of seasonal patterns and a smoothed
birth series. A classic approach is to consider the series
as being composed of a long-term movement or trend,
regular oscillations about the trend, fixed seasonal fac-
tors, and residual irregular movements or ‘distur-
bances.” The trend and other components can be sep-
arated by a variety of techniques, e.g., with moving
average filters, by taking successive first differences, or
by polynomial regression (Chatfield 1989), and the trend
then examined in isolation without the complications
of the other features.

The decomposition of a series into trend and other
components, however, has no unique solution and, to
a large extent, personal judgment must be employed
in choosing the decomposition technique (Kendall
1976). Usually, components other than the trend are
most dependent on the decomposition method, par-
ticularly the spectral properties of residuals after trend
removal. Linear detrending of a random walk, for ex-
ample, creates spurious autocorrelation in the residuals
at small lags (Chan et al. 1977). A fixed algorithm for
approaching time series decomposition will inevitably
introduce distortions in certain cases. Also, no decom-
position can resolve the difference between a mono-
tonic trend and a natural oscillation with a period much
longer than the series length. In some cases, natural
populations, e.g., certain marine fish, may undergo cy-
cles with periods measured by centuries (Schindler
1987).

Decomposition of a time series is not always pos-
sible, even when desirable. Typical problems with eco-
logical time series include lack of sufficient data, the
presence of censored data (i.e., data below the detection
limit), missing data, and irregularly spaced sampling
times. These same difficulties can prevent application
of Box-Tiao intervention analysis (Box and Tiao 1975,
Carpenter 1990) to the detection of step trends. In
general, then, we require trend detection methods that
can overcome these obstacles as well as the various
forms of autocorrelation present in time series. Clas-
sical statistical tests are inadequate, and typically have
additional requirements for constancy of variance and
normality that are rarely satisfied by ecological time
series. Fortunately, distribution-free tests have been
devised recently that permit trend analysis for a wide
variety of series, obviating any need for a time series
decomposition (Gibbons 1985, Neave and Worthing-
ton 1988). A recent issue of Water Resources Bulletin
(June 1988, Volume 24, Number 3) features the ap-
plication of these techniques to water quality trends.

The exact character of the time series will determine

which of the many distribution-free tests is appropri-
ate. Berryman et al. (1988) list nine tests for monotonic
trend, seven tests for step trend, and three tests for
multistep trend, as well as an algorithm for deciding
among them. Choosing a suitable test depends not only
on the type of trend under investigation, but also on
the autocorrelation structure, the homogeneity of the
separate monthly trends, and the series length. It is also
important to understand that distribution-free tests are
not a panacea for all problems with data; they require
various assumptions, which may be violated for par-
ticular data sets.

DETECTING CHANGES IN
OSCILLATORY BEHAVIOR

Cyclic behavior is common in ecosystems. Strong
seasonal variation, for example, is the rule rather than
the exception for plant and animal communities (wit-
ness the birth rates of Fig. 1). Two statistical quantities
are crucial to the study of cyclic phenomena: the au-
tocorrelation function (ACF) and the spectrum (S). The
ACF is the basic quantity used to analyze time series
in the “time domain,” and S performs the same role
in the “frequency domain.” Many references carefully
define and extensively discuss these quantities (e.g.,
Kendall 1976, Chatfield 1989, Wei 1990). Although
the results obtained from consideration of the ACF
must be mathematically equivalent to those obtained
from consideration of the spectrum, and vice versa,
one or the other of the quantities will be much easier
to calculate or interpret in practice.

The spectrum allows a straightforward answer to the
question: Have the properties of the cyclic variation
changed? The spectrum of the time series is compared
before and after the presumed perturbation. Is the peak
in the same place (i.e., in the same frequency band or
bands) both before and after? If yes, then the frequency
of the cyclic behavior is unchanged. Is the area under
the curve of S “near the peak” the same before and
after the perturbation? If yes, then the variance asso-
ciated with cyclic behavior is unchanged, i.e., the am-
plitude of the cyclic oscillation is unchanged. In some
cases, it may be possible to make these before-after
comparisons simply by inspection. Emanuel et al. (1978)
illustrate this approach in their study of the effects of
three environmental perturbations on a model of forest
succession in Appalachian deciduous forests. But most
often the changes are slight, and a satisfactory before-
after comparison reduces to a question about confi-
dence levels for spectral estimates (Shumway 1989).
The Kolmogorov-Smirnov test (Neave and Worthing-
ton 1988) can be used for an overall comparison of
two spectra.

Two cautions concerning the comparisons of vari-
ance before and after a perturbation are in order. Often
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one is most interested in the relative contribution of a
cyclic component to the total variance, not its absolute
contribution. One should then normalize the spectra
to the same total variance before any comparison is
made (e.g., Denman 1976). Second, it is common for
the cyclic peak to lie atop some noise background in
the curve for S. This background should be subtracted
before any comparisons are attempted.

One of the gravest difficulties an analyst of cyclic
behavior faces is the large amount of data needed to
calculate spectra. The (conservative) rule of thumb,
that to unambiguously resolve a cyclic component one
must record 10 oscillations, places great restrictions on
what one can say about low-frequency phenomena,
often the phenomena of greatest interest. For series
that do not have many entries, as is usually the case
with ecological time series, one can often obtain more
reliable results from the ACF. To obtain statistically
significant spectral estimates, one must average over
many frequency bands. Hence, few estimates remain
and they apply to very wide spectral windows. For the
ACEF, on the other hand, confidence intervals are rel-
atively narrow. For example, in an annual time series
of duration, say, 32 yr (a short time series, but a very
long ecological time series), the =95% confidence lim-
its on the ACF are =~0.35. Thus any lagged correlations
that are greater than 0.35 (not a large correlation) are
significant. Again, one should be confident about only
the ACF values for small lags, about one-fourth or less
of the series length.

Work on so-called autoregressive spectral estimators
suggests that cyclic components can be resolved with
much shorter records than suggested above. The best
known approach is Maximum Entropy Spectral Anal-
ysis (MESA), pioneered by Burg (1975). In an influ-
ential note, Ulrych (1972) demonstrated how the MESA
technique could resolve spectral components from
much shorter records than the common Fourier ap-
proach. The method appears to resolve the frequency
of a component that contributes less than a full cycle
to a time series record! If the spectrum of a process is
known to be dominated by one or a few distinct cyclic
components, the MESA technique gives excellent fre-
quency resolution. Unfortunately, many spectra from
geophysical or ecological records are continuous (Den-
man 1976, Abbott et al. 1982), and contributions to
the time series arise from al/ frequencies, not just a
few. In these cases, the spectra calculated from Max-
imum Entropy techniques will have a very large num-
ber of spikes; every rise and fall in the record will look
approximately like a half-cycle of some sine or cosine
component. One is then forced to average over many
spikes (negating the method’s high-frequency resolu-
tion) to obtain a stable spectral estimate. The MESA
technique is superior only when one or a few harmonics

dominate, for example, in a tidally dominated envi-
ronment.

UNUSUAL EVENTS

The term ““unusual events” refers to short-term, yet
substantial, discontinuities in the underlying behavior
of a time series. Unusual events are among the most
difficult, but most crucial, phenomena that ecologists
(and time series analysts, in general) must handle ef-
fectively. Carpenter (1988) illustrates how single un-
usual events can vastly improve our understanding of
an ecosystem and our ability to forecast future behav-
ior. Indeed, this illuminating quality of single events
is the rationale behind experimental large-scale per-
turbations of ecosystems.

Often we may have no a priori knowledge of cause,
but our attention is struck by some anomalous short-
term behavior of the series, an outlier. The time series
of monthly births again presents an excellent example
(Fig. 1). The large negative value of the amplitude time
series for 1951 is the lowest for the entire 30-yr record
(Fig. 2B). As the amplitude represents the contribution
of a 12-mo oscillation to the seasonally varying birth
rate, the 1951 value corresponds to a year with much
less seasonal variation than normal. Inasmuch as the
Korean War began in August 1950, the anomalous
birth rate in 1951 may reflect the effects of the conflict,
but the exact cause of this “‘unusual” event is beyond
our scope here.

How do we decide whether an atypical value merits
special consideration; i.e., how can we quantify the
concept of “unusual”? If the effects of the outlier on
the series are moderate, the outlier can be detected by
postulating a probability model for the “underlying”
series (Fox 1972, Wei 1990). The probability models
most commonly used are ARIMA models (Auto-
Regressive-Integrated-Moving-Average models; Box
and Jenkins 1976), in which the value of a variable is
expressed as a linear combination of previous values,
a white noise process, and previous values of the white
noise. Extreme outliers make it very difficult to char-
acterize the “underlying” series, however, as they se-
riously distort the autocorrelation and spectral pattern.
On the other hand, they will usually show up in a time
plot as indisputably anomalous.

A related problem is posed when an ecosystem is
subjected to an intentional perturbation. In this case,
the ““cause” is known and we are interested in the size
and nature of any concomitant changes occurring in
the series of interest. As discussed elsewhere (Carpenter
1990), intervention analysis offers a fruitful approach
when the timing and qualitative nature of the response
is clear from the raw data. Probability models are fit
to the ““underlying” series and various dynamic models
used for the effects of intervention. In addition to the
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pioneering study of Box and Tiao (1975) on Los An-
geles air pollution, intervention analysis has been used
in ecology to examine such disparate topics as the effect
of the 1965 New York City blackout on birth rates
(Izenman and Zabell 1981); power plant impacts on
fish populations (Madenjian et al. 1986); and an abrupt
decline in British Columbia Dungeness crab landings
(Noakes 1986).

Intervention analysis requires subjective judgments
regarding the form of the dynamic model used to model
the intervention effects. For example, is a step change,
an exponential decay back to the long-term mean, or
perhaps some other description most accurate? Using
Bayesian techniques, a variety of models can be en-
tertained simultaneously, one of which is to be chosen
as the best representation of the process (Bolstad 1986;
see also Reckhow 1990).

INFERENCE REGARDING CAUSATION

Often we are led to investigate the relation between
a given ecological time series and a second series that
is hypothesized to constitute a perturbing influence:
Does one series “cause” the other? Usually the ques-
tion involves a statistical evaluation of the extent to
which the two series covary. Determining how two
time series might be associated involves singular issues
that are not encountered when comparing unordered
sets of data. These issues arise from the autocorrelation
present in almost all real-world processes when sam-
pled closely enough in time. A number of separate
concerns regarding autocorrelation can be delineated.

First, note that certain data transformations of a
completely random process can give rise to an auto-
correlated series. A well-known example is the ““Slutz-
ky-Yule effect,” which refers to the way in which mov-
ing averages generate apparently systematic oscillations
in a random series. Kendall (1976) describes this effect
and a related example (due to H. Working) in which
aggregation of even a random series, followed by taking
the first differences of successive aggregates, will lead
to serial correlation. This situation can arise easily with
ecological data that are averaged for the year, and then
differenced to remove a trend in the annual averages
and accentuate interannual variation.

Whether serial correlation is introduced through
moving averages or is present in the raw data, it must
be accounted for when examining the relationship be-
tween two series. The variance of the cross-correlation
function is dependent on the autocorrelation present
in the individual series, and a large cross-correlation
coeflicient is not necessarily statistically significant; the
effective number of degrees of freedom may have been
reduced. The converse problem may also occur, i.e.,
when a true relationship between two series is obscured
by some strong feature of one of the series, such as a

trend. One solution is to filter each series to remove
the obfuscating features and then compute the cross-
correlations between the two residual series (Chatfield
1989). Specifically, a filter is developed to convert the
“causal” or input variable to white noise (a process
called prewhitening), and the filter is applied to both
variables (Box and Jenkins 1976). Goldman et al. (1989)
give some practical examples of filtering to remove
trend and other forms of autocorrelation in an ecolog-
ical time series (annual lake primary production) before
cross-correlation analysis. Although prewhitening fil-
ters greatly reduce the problem of arriving at spurious
relationships, especially for nonstationary series, the
method is conservative and may underplay true causal
connections. For example, if two series do, in fact, have
a causal relationship that manifests as a trend in each
series, this evidence will be masked by the prewhiten-
ing process.

Once the series have been filtered to remove ob-
scuring features, the usual tests of association become
applicable. If the series have been converted to true
white noise, then the cross-correlations greater than
~=*2/\/N are significant at the .05 level, where N is
the length of the series. If filtering has removed de-
pendence within each series, but the filtered series does
not appear to arise from a normal distribution, then
Spearman’s rank correlation coefficient or the Kendall
tau statistic are powerful alternatives (Gibbons 1985).

An alternative to prewhitening is to use theoretical
results for the variance of estimated cross-correlations
between autocorrelated series. Bartlett (1966) devel-
oped an expression for the variance atlag k, k=0, 1,
2, ..., in terms of the actual cross-correlations and
autocorrelations for the two series at all lags. In prac-
tice, the variance must be approximated from this ex-
pression by using estimated values for the correlations
and truncating the infinite summation to a finite num-
ber of lags. Different methods of truncation have re-
sulted in a variety of expressions for the variance or,
equivalently, for the effective number of degrees of
freedom. Several of these expressions have been com-
pared in Monte Carolo simulations and an interesting
conclusion has emerged (Botsford 1987, Kope and
Botsford 1988). In cases with weak intra-series corre-
lation, the usual variance estimate for series with no
autocorrelation, namely 1/(N — k), leads to more ac-
curate rejection rates than all the other expressions.
Although the ““corrected” expressions make a better
estimate of the average variance, the variance of these
estimates is high. Thus, unless the intraseries correla-
tions are strong, it is better to ignore them. Note also
that, if either series has zero autocorrelation, Bartlett’s
expression reduces to the uncorrected expression for
the variance under the null hypothesis of no cross-
correlation. On the other hand, it is essential to correct
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the degrees of freedom when both series do have strong
internal structure. Drinkwater and Myers (1987) pro-
vide an example of this kind of calculation in regard
to the relation between fish catch and environmental
variables, showing how a failure to account for the loss
of degrees of freedom can lead to erroneous conclu-
sions.

In many cases, a series may be measured on a nom-
inal scale; for example, the perturbation series may
only record the presence or absence of a perturbation
at each point in time. These problems are best reduced
to an analysis of contingency tables using the chi-
squared test of independence (Neave and Worthington
1988). Alexander and Smith (1988) give some exam-
ples of this test in assessing the relation between riv-
erine lead concentrations and gasoline consumption.
Agresti et al. (1979) describe an alternative procedure
for those cases where entries in the contingency table
are too small to employ the chi-squared approximation
for the test statistic. Unfortunately, the alternative tests
are conditional on the observed marginal frequencies
of the contingency table, whereas in practice these fre-
quencies often cannot be treated as fixed quantities.
(Neave and Worthington [1988] discuss this issue in
relation to Fisher’s exact test, the alternative for 2 x
2 contingency tables.)

Goldman et al. (1989) encountered this difficulty
while investigating the effects of the El Nifio/Southern
Oscillation (ENSO) phenomenon on annual primary
production in Castle Lake, California. The issue was
whether or not ENSO years resulted in anomalous pro-
duction, where ‘“anomalous” was defined as greater
than one standard deviation away from the long-term
mean. The chi-squared test was inapplicable, and Fish-
er’s exact test required unwarranted assumptions. As
an alternative, they chose to examine whether the val-
ues for ENSO years had a larger spread or scale than
for non-ENSO years, i.e., whether an ENSO year had
a greater probability of being extreme. The Siegel-Tu-
key test (Gibbons 1985) turned out to be appropriate,
and indeed the null hypothesis was rejected. Strub et
al. (1985) used an identical approach to show that heat
storage at Castle Lake tended to be extreme during
ENSO years. Perhaps similar analyses will be useful
when applied to still higher moments, like the skewness
and kurtosis, of ecologically important quantities. One
can, of course, test for the equivalence of entire dis-
tributions, disregarding considerations of the individ-
ual moments, using an appropriate goodness-of-fit test
(Neave and Worthington 1988). In summary, hypoth-
eses regarding association can often be rephrased to
find a suitable test when the “obvious” choice turns
out to be inapplicable.

Statistical evaluations of the extent to which two
series covary, regardless of what test is chosen, are not

sufficient for establishing significant causal relation-
ships. One only has to point to the numerous correl-
ative studies that have failed the test of time (Walters
and Collie 1988). Often an investigator scans numerous
series for cross-correlations, in which case the proba-
bility of identifying a spurious relationship is greater
than the individual probabilities. Statistical evalua-
tions should be completely described, and must be
accompanied by a variety of independent measure-
ments supporting a plausible causal mechanism.

CONCLUDING REMARKS

Flexibility is an indispensable feature of any attempt
to investigate changing time series. A ““classical” anal-
ysis has been emphasized here in which the series is
decomposed into a trend, seasonality, long-term cycles,
and residual fluctuations or unusual events. But, as
noted earlier, even within the boundaries of a classical
decomposition, several lines of attack must be consid-
ered. Flexibility also entails the use of approaches other
than decomposition of the series. In ARIMA models,
for example, there is no recourse to a complete decom-
position, although trends and seasonality are removed
implicitly through differencing operations. Such mod-
els with surprisingly few terms often provide a compact
way of expressing lengthy time series. Goldman et al.
(1989) present a limnological example.

" Occasionally, less formal approaches to modelling
the “unperturbed” series are very instructive. Rust and
Kirk (1978) provide three examples in which time se-
ries for striped bass, atmospheric CO,, and Canadian
lynx are modelled by an iterative procedure using re-
gression and spectral analysis. Regression is used for
detrending and spectral analysis for identifying har-
monic terms. As exemplified particularly by the study
of the CO, series, quite complex combinations of ef-
fects can be uncovered by this inductive approach.
These informal “time series” techniques may not al-
ways be productive, but the analyst should not eschew
their use simply because they are somehow less elegant.

Finally, recent software developments for micro-
computers are proving to be part of the key to flexi-
bility. As is true in so many fields, the advent of pow-
erful desktop personal computing has radically changed
the accessibility of time series analysis methods. Vir-
tually every scientist who deals with field or laboratory
data in ecology has statistics procedures readily avail-
able on a microcomputer. Most of these have quite
sophisticated time series components that are easy to
use. It is commonly argued that this accessibility in-
creases the misuse of sophisticated statistical tech-
niques by those who are inadequately versed in the
underlying theory. Although inappropriate use may
sometimes occur, this same accessibility is also a tre-
mendous motivation for learning statistical methods
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and, in particular, time series analysis. The ease of use
and insight gained may surprise even the most skeptical
of readers.
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